MakeItFrom.com
Menu (ESC)

512.0 Aluminum vs. 6262 Aluminum

Both 512.0 aluminum and 6262 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 512.0 aluminum and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 2.0
4.6 to 10
Fatigue Strength, MPa 58
90 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 130
290 to 390
Tensile Strength: Yield (Proof), MPa 83
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 150
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
44
Electrical Conductivity: Equal Weight (Specific), % IACS 130
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 50
530 to 940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
48
Strength to Weight: Axial, points 14
29 to 39
Strength to Weight: Bending, points 22
35 to 42
Thermal Diffusivity, mm2/s 60
69
Thermal Shock Resistance, points 6.1
13 to 18

Alloy Composition

Aluminum (Al), % 90.6 to 95.1
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0 to 0.25
0.040 to 0.14
Copper (Cu), % 0 to 0.35
0.15 to 0.4
Iron (Fe), % 0 to 0.6
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 3.5 to 4.5
0.8 to 1.2
Manganese (Mn), % 0 to 0.8
0 to 0.15
Silicon (Si), % 1.4 to 2.2
0.4 to 0.8
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 0.35
0 to 0.25
Residuals, % 0
0 to 0.15