MakeItFrom.com
Menu (ESC)

512.0 Aluminum vs. AWS E316

512.0 aluminum belongs to the aluminum alloys classification, while AWS E316 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 512.0 aluminum and the bottom bar is AWS E316.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 2.0
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 130
580

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1160
160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 14
20
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 60
4.0
Thermal Shock Resistance, points 6.1
15

Alloy Composition

Aluminum (Al), % 90.6 to 95.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
17 to 20
Copper (Cu), % 0 to 0.35
0 to 0.75
Iron (Fe), % 0 to 0.6
58.6 to 69.5
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.8
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
11 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.4 to 2.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0