MakeItFrom.com
Menu (ESC)

512.0 Aluminum vs. C10400 Copper

512.0 aluminum belongs to the aluminum alloys classification, while C10400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 512.0 aluminum and the bottom bar is C10400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 2.0
2.3 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 130
230 to 410
Tensile Strength: Yield (Proof), MPa 83
77 to 400

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 630
1080
Melting Onset (Solidus), °C 590
1080
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
390
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
100
Electrical Conductivity: Equal Weight (Specific), % IACS 130
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 8.8
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1160
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
8.5 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 50
25 to 690
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 14
7.2 to 13
Strength to Weight: Bending, points 22
9.4 to 14
Thermal Diffusivity, mm2/s 60
110
Thermal Shock Resistance, points 6.1
8.2 to 15

Alloy Composition

Aluminum (Al), % 90.6 to 95.1
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.35
99.9 to 99.973
Iron (Fe), % 0 to 0.6
0
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.8
0
Oxygen (O), % 0
0 to 0.0010
Silicon (Si), % 1.4 to 2.2
0
Silver (Ag), % 0
0.027 to 0.050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0
0 to 0.050