MakeItFrom.com
Menu (ESC)

512.0 Aluminum vs. C79600 Nickel Silver

512.0 aluminum belongs to the aluminum alloys classification, while C79600 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 512.0 aluminum and the bottom bar is C79600 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 2.0
15
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 130
480
Tensile Strength: Yield (Proof), MPa 83
300

Thermal Properties

Latent Heat of Fusion, J/g 420
180
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 630
930
Melting Onset (Solidus), °C 590
880
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
36
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
63
Resilience: Unit (Modulus of Resilience), kJ/m3 50
400
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 51
20
Strength to Weight: Axial, points 14
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 60
12
Thermal Shock Resistance, points 6.1
15

Alloy Composition

Aluminum (Al), % 90.6 to 95.1
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.35
43.5 to 46.5
Iron (Fe), % 0 to 0.6
0
Lead (Pb), % 0
0.8 to 1.2
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.8
1.5 to 2.5
Nickel (Ni), % 0
9.0 to 11
Silicon (Si), % 1.4 to 2.2
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
38.3 to 45.2
Residuals, % 0
0 to 0.5