MakeItFrom.com
Menu (ESC)

512.0 Aluminum vs. C96800 Copper

512.0 aluminum belongs to the aluminum alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 512.0 aluminum and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 2.0
3.4
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 130
1010
Tensile Strength: Yield (Proof), MPa 83
860

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 630
1120
Melting Onset (Solidus), °C 590
1060
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
10
Electrical Conductivity: Equal Weight (Specific), % IACS 130
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.8
3.4
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1160
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
33
Resilience: Unit (Modulus of Resilience), kJ/m3 50
3000
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 14
32
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 60
15
Thermal Shock Resistance, points 6.1
35

Alloy Composition

Aluminum (Al), % 90.6 to 95.1
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.35
87.1 to 90.5
Iron (Fe), % 0 to 0.6
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.8
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 1.4 to 2.2
0
Sulfur (S), % 0
0 to 0.0025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0 to 1.0
Residuals, % 0
0 to 0.5