MakeItFrom.com
Menu (ESC)

512.0 Aluminum vs. N07750 Nickel

512.0 aluminum belongs to the aluminum alloys classification, while N07750 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 512.0 aluminum and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 2.0
25
Fatigue Strength, MPa 58
520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 130
1200
Tensile Strength: Yield (Proof), MPa 83
820

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.8
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
270
Resilience: Unit (Modulus of Resilience), kJ/m3 50
1770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 14
40
Strength to Weight: Bending, points 22
30
Thermal Diffusivity, mm2/s 60
3.3
Thermal Shock Resistance, points 6.1
36

Alloy Composition

Aluminum (Al), % 90.6 to 95.1
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.35
0 to 0.5
Iron (Fe), % 0 to 0.6
5.0 to 9.0
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.8
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Silicon (Si), % 1.4 to 2.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
2.3 to 2.8
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0