MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. 6008 Aluminum

Both 513.0 aluminum and 6008 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 5.7
9.1 to 17
Fatigue Strength, MPa 97
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170
120 to 170
Tensile Strength: Ultimate (UTS), MPa 200
200 to 290
Tensile Strength: Yield (Proof), MPa 120
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 590
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
49
Electrical Conductivity: Equal Weight (Specific), % IACS 110
160

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.5
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 100
76 to 360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 20
21 to 29
Strength to Weight: Bending, points 28
28 to 35
Thermal Diffusivity, mm2/s 54
77
Thermal Shock Resistance, points 8.8
9.0 to 13

Alloy Composition

Aluminum (Al), % 91.9 to 95.1
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
0 to 0.35
Magnesium (Mg), % 3.5 to 4.5
0.4 to 0.7
Manganese (Mn), % 0 to 0.3
0 to 0.3
Silicon (Si), % 0 to 0.3
0.5 to 0.9
Titanium (Ti), % 0 to 0.2
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 1.4 to 2.2
0 to 0.2
Residuals, % 0
0 to 0.15