MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. AISI 431 Stainless Steel

513.0 aluminum belongs to the aluminum alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
250
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 5.7
15 to 17
Fatigue Strength, MPa 97
430 to 610
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 170
550 to 840
Tensile Strength: Ultimate (UTS), MPa 200
890 to 1380
Tensile Strength: Yield (Proof), MPa 120
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
850
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 590
1450
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1170
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1270 to 2770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 20
32 to 50
Strength to Weight: Bending, points 28
27 to 36
Thermal Diffusivity, mm2/s 54
7.0
Thermal Shock Resistance, points 8.8
28 to 43

Alloy Composition

Aluminum (Al), % 91.9 to 95.1
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
78.2 to 83.8
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Nickel (Ni), % 0
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 1.4 to 2.2
0
Residuals, % 0 to 0.15
0