MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. ASTM Grade HL Steel

513.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
150
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 5.7
11
Fatigue Strength, MPa 97
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 200
500
Tensile Strength: Yield (Proof), MPa 120
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 590
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1170
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
48
Resilience: Unit (Modulus of Resilience), kJ/m3 100
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 28
18
Thermal Shock Resistance, points 8.8
11

Alloy Composition

Aluminum (Al), % 91.9 to 95.1
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0
28 to 32
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
40.8 to 53.8
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 1.4 to 2.2
0
Residuals, % 0 to 0.15
0