MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. AWS E80C-W2

513.0 aluminum belongs to the aluminum alloys classification, while AWS E80C-W2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is AWS E80C-W2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 5.7
25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 200
620
Tensile Strength: Yield (Proof), MPa 120
540

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1170
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
150
Resilience: Unit (Modulus of Resilience), kJ/m3 100
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 28
21
Thermal Diffusivity, mm2/s 54
10
Thermal Shock Resistance, points 8.8
18

Alloy Composition

Aluminum (Al), % 91.9 to 95.1
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
0.45 to 0.7
Copper (Cu), % 0 to 0.1
0.3 to 0.75
Iron (Fe), % 0 to 0.4
94.9 to 98
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.3
0.5 to 1.3
Nickel (Ni), % 0
0.4 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0.35 to 0.8
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 1.4 to 2.2
0
Residuals, % 0
0 to 0.5