MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. EN 1.4523 Stainless Steel

513.0 aluminum belongs to the aluminum alloys classification, while EN 1.4523 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is EN 1.4523 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
180
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 5.7
17
Fatigue Strength, MPa 97
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 170
320
Tensile Strength: Ultimate (UTS), MPa 200
520
Tensile Strength: Yield (Proof), MPa 120
320

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
2.9
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1170
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
77
Resilience: Unit (Modulus of Resilience), kJ/m3 100
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 54
5.8
Thermal Shock Resistance, points 8.8
18

Alloy Composition

Aluminum (Al), % 91.9 to 95.1
0 to 0.040
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
75.7 to 80.2
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.3
0 to 0.5
Molybdenum (Mo), % 0
2.0 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.2
0.15 to 0.8
Zinc (Zn), % 1.4 to 2.2
0
Residuals, % 0 to 0.15
0