MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. EN 1.8527 Steel

513.0 aluminum belongs to the aluminum alloys classification, while EN 1.8527 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is EN 1.8527 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
270
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 5.7
16
Fatigue Strength, MPa 97
520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 170
550
Tensile Strength: Ultimate (UTS), MPa 200
900
Tensile Strength: Yield (Proof), MPa 120
800

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 170
490
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1170
66

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
140
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1670
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 28
26
Thermal Diffusivity, mm2/s 54
11
Thermal Shock Resistance, points 8.8
26

Alloy Composition

Aluminum (Al), % 91.9 to 95.1
0
Carbon (C), % 0
0.040 to 0.12
Chromium (Cr), % 0
3.7 to 4.3
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.4
93.2 to 95.1
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.3
0.85 to 1.2
Molybdenum (Mo), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 1.4 to 2.2
0
Residuals, % 0 to 0.15
0