MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. Nickel 242

513.0 aluminum belongs to the aluminum alloys classification, while nickel 242 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is nickel 242.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 5.7
45
Fatigue Strength, MPa 97
300
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
84
Shear Strength, MPa 170
570
Tensile Strength: Ultimate (UTS), MPa 200
820
Tensile Strength: Yield (Proof), MPa 120
350

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 590
1290
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 8.8
14
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
300
Resilience: Unit (Modulus of Resilience), kJ/m3 100
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 28
21
Thermal Diffusivity, mm2/s 54
3.1
Thermal Shock Resistance, points 8.8
25

Alloy Composition

Aluminum (Al), % 91.9 to 95.1
0 to 0.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
7.0 to 9.0
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.4
0 to 2.0
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.3
0 to 0.8
Molybdenum (Mo), % 0
24 to 26
Nickel (Ni), % 0
59.3 to 69
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.8
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 1.4 to 2.2
0
Residuals, % 0 to 0.15
0