MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. C90900 Bronze

513.0 aluminum belongs to the aluminum alloys classification, while C90900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
90
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 5.7
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 200
280
Tensile Strength: Yield (Proof), MPa 120
140

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
980
Melting Onset (Solidus), °C 590
820
Specific Heat Capacity, J/kg-K 900
360
Thermal Conductivity, W/m-K 130
65
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.8
3.9
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1170
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
35
Resilience: Unit (Modulus of Resilience), kJ/m3 100
89
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 20
8.8
Strength to Weight: Bending, points 28
11
Thermal Diffusivity, mm2/s 54
21
Thermal Shock Resistance, points 8.8
10

Alloy Composition

Aluminum (Al), % 91.9 to 95.1
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.1
86 to 89
Iron (Fe), % 0 to 0.4
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
12 to 14
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 1.4 to 2.2
0 to 0.25
Residuals, % 0
0 to 0.6