MakeItFrom.com
Menu (ESC)

514.0 Aluminum vs. ASTM Grade LCB Steel

514.0 aluminum belongs to the aluminum alloys classification, while ASTM grade LCB steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 514.0 aluminum and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 7.3
27
Fatigue Strength, MPa 48
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
72
Tensile Strength: Ultimate (UTS), MPa 180
540
Tensile Strength: Yield (Proof), MPa 74
270

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
51
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
120
Resilience: Unit (Modulus of Resilience), kJ/m3 41
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 7.9
17

Alloy Composition

Aluminum (Al), % 93.6 to 96.5
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
97 to 100
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0
0 to 1.0