MakeItFrom.com
Menu (ESC)

514.0 Aluminum vs. EN 1.0070 Steel

514.0 aluminum belongs to the aluminum alloys classification, while EN 1.0070 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 514.0 aluminum and the bottom bar is EN 1.0070 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
210
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 7.3
9.1
Fatigue Strength, MPa 48
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 140
440
Tensile Strength: Ultimate (UTS), MPa 180
740
Tensile Strength: Yield (Proof), MPa 74
350

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
53
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
7.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.7
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
56
Resilience: Unit (Modulus of Resilience), kJ/m3 41
320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 19
26
Strength to Weight: Bending, points 26
23
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 7.9
23

Alloy Composition

Aluminum (Al), % 93.6 to 96.5
0
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
99.876 to 100
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
0
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.055
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0
0 to 0.055
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0