MakeItFrom.com
Menu (ESC)

514.0 Aluminum vs. EN 1.4857 Stainless Steel

514.0 aluminum belongs to the aluminum alloys classification, while EN 1.4857 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 514.0 aluminum and the bottom bar is EN 1.4857 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
150
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 7.3
6.7
Fatigue Strength, MPa 48
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 180
500
Tensile Strength: Yield (Proof), MPa 74
250

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 610
1320
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
5.7
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
28
Resilience: Unit (Modulus of Resilience), kJ/m3 41
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 57
3.4
Thermal Shock Resistance, points 7.9
11

Alloy Composition

Aluminum (Al), % 93.6 to 96.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
31.4 to 41.7
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 36
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0