MakeItFrom.com
Menu (ESC)

514.0 Aluminum vs. SAE-AISI 4118 Steel

514.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4118 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 514.0 aluminum and the bottom bar is SAE-AISI 4118 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
150
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 7.3
23
Fatigue Strength, MPa 48
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 140
320
Tensile Strength: Ultimate (UTS), MPa 180
500
Tensile Strength: Yield (Proof), MPa 74
320

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
100
Resilience: Unit (Modulus of Resilience), kJ/m3 41
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 57
13
Thermal Shock Resistance, points 7.9
15

Alloy Composition

Aluminum (Al), % 93.6 to 96.5
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
97.5 to 98.4
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
0.7 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.35
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0