MakeItFrom.com
Menu (ESC)

514.0 Aluminum vs. C71580 Copper-nickel

514.0 aluminum belongs to the aluminum alloys classification, while C71580 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 514.0 aluminum and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
75
Elastic (Young's, Tensile) Modulus, GPa 68
140
Elongation at Break, % 7.3
40
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
51
Shear Strength, MPa 140
230
Tensile Strength: Ultimate (UTS), MPa 180
330
Tensile Strength: Yield (Proof), MPa 74
110

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 640
1180
Melting Onset (Solidus), °C 610
1120
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.9
5.1
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
100
Resilience: Unit (Modulus of Resilience), kJ/m3 41
47
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 19
10
Strength to Weight: Bending, points 26
12
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 7.9
11

Alloy Composition

Aluminum (Al), % 93.6 to 96.5
0
Carbon (C), % 0
0 to 0.070
Copper (Cu), % 0 to 0.15
65.5 to 71
Iron (Fe), % 0 to 0.5
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
0 to 0.3
Nickel (Ni), % 0
29 to 33
Silicon (Si), % 0 to 0.35
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0 to 0.050
Residuals, % 0
0 to 0.5