MakeItFrom.com
Menu (ESC)

514.0 Aluminum vs. C93600 Bronze

514.0 aluminum belongs to the aluminum alloys classification, while C93600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 514.0 aluminum and the bottom bar is C93600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
99
Elongation at Break, % 7.3
14
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 25
36
Tensile Strength: Ultimate (UTS), MPa 180
260
Tensile Strength: Yield (Proof), MPa 74
140

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 170
150
Melting Completion (Liquidus), °C 640
940
Melting Onset (Solidus), °C 610
840
Specific Heat Capacity, J/kg-K 900
350
Thermal Conductivity, W/m-K 140
49
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 8.9
3.2
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
31
Resilience: Unit (Modulus of Resilience), kJ/m3 41
98
Stiffness to Weight: Axial, points 14
6.1
Stiffness to Weight: Bending, points 51
17
Strength to Weight: Axial, points 19
7.9
Strength to Weight: Bending, points 26
9.9
Thermal Diffusivity, mm2/s 57
16
Thermal Shock Resistance, points 7.9
9.8

Alloy Composition

Aluminum (Al), % 93.6 to 96.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.55
Copper (Cu), % 0 to 0.15
79 to 83
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
11 to 13
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.35
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0 to 1.0
Residuals, % 0
0 to 0.7