MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. AWS E80C-Ni2

515.0 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni2 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is AWS E80C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 280
620

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 620
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.3
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1120
51

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 30
22
Strength to Weight: Bending, points 36
21
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0 to 1.3
93.8 to 98.3
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
0 to 1.5
Nickel (Ni), % 0
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 10
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5