MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. EN 1.0348 Steel

515.0 aluminum belongs to the aluminum alloys classification, while EN 1.0348 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is EN 1.0348 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10
28
Fatigue Strength, MPa 130
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 190
250
Tensile Strength: Ultimate (UTS), MPa 280
380

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.4
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1120
48

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 30
13
Strength to Weight: Bending, points 36
15
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0.020 to 0.2
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 1.3
97.5 to 99.98
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 10
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0