MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. EN 1.4588 Stainless Steel

515.0 aluminum belongs to the aluminum alloys classification, while EN 1.4588 stainless steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is EN 1.4588 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 10
34
Fatigue Strength, MPa 130
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 280
540

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 620
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 8.4
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1120
200

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 30
18
Strength to Weight: Bending, points 36
18
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0 to 0.2
0.5 to 1.5
Iron (Fe), % 0 to 1.3
41.2 to 50.4
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0