MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. EN 1.4931 Steel

515.0 aluminum belongs to the aluminum alloys classification, while EN 1.4931 steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 10
17
Fatigue Strength, MPa 130
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 280
810

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.4
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1120
100

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 30
29
Strength to Weight: Bending, points 36
25
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0
Carbon (C), % 0
0.2 to 0.26
Chromium (Cr), % 0
11.3 to 12.2
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.3
83.2 to 86.8
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
0.5 to 0.8
Molybdenum (Mo), % 0
1.0 to 1.2
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 10
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0