MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. CC382H Copper-nickel

515.0 aluminum belongs to the aluminum alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 10
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
53
Tensile Strength: Ultimate (UTS), MPa 280
490

Thermal Properties

Latent Heat of Fusion, J/g 470
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 620
1180
Melting Onset (Solidus), °C 620
1120
Specific Heat Capacity, J/kg-K 900
410
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.4
5.2
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1120
290

Common Calculations

Stiffness to Weight: Axial, points 15
8.8
Stiffness to Weight: Bending, points 52
20
Strength to Weight: Axial, points 30
15
Strength to Weight: Bending, points 36
16
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 0 to 0.2
62.8 to 68.4
Iron (Fe), % 0 to 1.3
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 2.5 to 4.0
0 to 0.010
Manganese (Mn), % 0.4 to 0.6
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0.5 to 10
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0