MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. C19700 Copper

515.0 aluminum belongs to the aluminum alloys classification, while C19700 copper belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 10
2.4 to 13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 190
240 to 300
Tensile Strength: Ultimate (UTS), MPa 280
400 to 530

Thermal Properties

Latent Heat of Fusion, J/g 470
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 620
1090
Melting Onset (Solidus), °C 620
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.4
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1120
310

Common Calculations

Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 30
12 to 16
Strength to Weight: Bending, points 36
14 to 16
Thermal Shock Resistance, points 13
14 to 19

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.2
97.4 to 99.59
Iron (Fe), % 0 to 1.3
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.5 to 4.0
0.010 to 0.2
Manganese (Mn), % 0.4 to 0.6
0 to 0.050
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0
0.1 to 0.4
Silicon (Si), % 0.5 to 10
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.2