MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. C90200 Bronze

515.0 aluminum belongs to the aluminum alloys classification, while C90200 bronze belongs to the copper alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 10
30
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 280
260

Thermal Properties

Latent Heat of Fusion, J/g 470
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 620
1050
Melting Onset (Solidus), °C 620
880
Specific Heat Capacity, J/kg-K 900
370
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 8.4
3.3
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1120
370

Common Calculations

Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 30
8.3
Strength to Weight: Bending, points 36
10
Thermal Shock Resistance, points 13
9.5

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.2
91 to 94
Iron (Fe), % 0 to 1.3
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.5 to 10
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.6