MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. C91000 Bronze

515.0 aluminum belongs to the aluminum alloys classification, while C91000 bronze belongs to the copper alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 10
7.0
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 280
230

Thermal Properties

Latent Heat of Fusion, J/g 470
180
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 620
960
Melting Onset (Solidus), °C 620
820
Specific Heat Capacity, J/kg-K 900
360
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 8.4
4.1
Embodied Energy, MJ/kg 150
67
Embodied Water, L/kg 1120
420

Common Calculations

Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 30
7.5
Strength to Weight: Bending, points 36
9.7
Thermal Shock Resistance, points 13
8.8

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.2
84 to 86
Iron (Fe), % 0 to 1.3
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
0
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0.5 to 10
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
14 to 16
Zinc (Zn), % 0 to 0.1
0 to 1.5
Residuals, % 0
0 to 0.6