MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. N12160 Nickel

515.0 aluminum belongs to the aluminum alloys classification, while N12160 nickel belongs to the nickel alloys. There are 23 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 10
45
Fatigue Strength, MPa 130
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 190
500
Tensile Strength: Ultimate (UTS), MPa 280
710

Thermal Properties

Latent Heat of Fusion, J/g 470
360
Maximum Temperature: Mechanical, °C 170
1060
Melting Completion (Liquidus), °C 620
1330
Melting Onset (Solidus), °C 620
1280
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
90
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 8.4
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
400

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 30
24
Strength to Weight: Bending, points 36
22
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.3
0 to 3.5
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 10
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0