MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. R30155 Cobalt

515.0 aluminum belongs to the aluminum alloys classification, while R30155 cobalt belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 10
34
Fatigue Strength, MPa 130
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 190
570
Tensile Strength: Ultimate (UTS), MPa 280
850

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1470
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 8.4
9.7
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
300

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 30
28
Strength to Weight: Bending, points 36
24
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.3
24.3 to 36.2
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0