MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. S34565 Stainless Steel

515.0 aluminum belongs to the aluminum alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 10
39
Fatigue Strength, MPa 130
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 190
610
Tensile Strength: Ultimate (UTS), MPa 280
900

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 620
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.4
5.3
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1120
210

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 30
32
Strength to Weight: Bending, points 36
26
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.3
43.2 to 51.6
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0