MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. S45500 Stainless Steel

515.0 aluminum belongs to the aluminum alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10
3.4 to 11
Fatigue Strength, MPa 130
570 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 190
790 to 1090
Tensile Strength: Ultimate (UTS), MPa 280
1370 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 620
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.4
3.8
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1120
120

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 30
48 to 65
Strength to Weight: Bending, points 36
35 to 42
Thermal Shock Resistance, points 13
48 to 64

Alloy Composition

Aluminum (Al), % 93.6 to 96.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.2
1.5 to 2.5
Iron (Fe), % 0 to 1.3
71.5 to 79.2
Magnesium (Mg), % 2.5 to 4.0
0
Manganese (Mn), % 0.4 to 0.6
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.8 to 1.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0