MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. EN 1.0034 Steel

5154A aluminum belongs to the aluminum alloys classification, while EN 1.0034 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 100
97 to 110
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 19
9.0 to 32
Fatigue Strength, MPa 83 to 160
140 to 170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140 to 210
220 to 230
Tensile Strength: Ultimate (UTS), MPa 230 to 370
340 to 380
Tensile Strength: Yield (Proof), MPa 96 to 320
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
53
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
84 to 210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24 to 38
12 to 13
Strength to Weight: Bending, points 31 to 43
14 to 15
Thermal Diffusivity, mm2/s 53
14
Thermal Shock Resistance, points 10 to 16
11 to 12

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
98.7 to 100
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0 to 0.7
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants