MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. A356.0 Aluminum

Both 518.0 aluminum and A356.0 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
70
Elongation at Break, % 5.0
3.0 to 6.0
Fatigue Strength, MPa 140
50 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 310
160 to 270
Tensile Strength: Yield (Proof), MPa 190
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
610
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 98
150
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
40
Electrical Conductivity: Equal Weight (Specific), % IACS 81
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 9.4
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 270
49 to 300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
53
Strength to Weight: Axial, points 32
17 to 29
Strength to Weight: Bending, points 38
25 to 36
Thermal Diffusivity, mm2/s 40
64
Thermal Shock Resistance, points 14
7.6 to 13

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
91.1 to 93.3
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 0 to 1.8
0 to 0.2
Magnesium (Mg), % 7.5 to 8.5
0.25 to 0.45
Manganese (Mn), % 0 to 0.35
0 to 0.1
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 0 to 0.35
6.5 to 7.5
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0
0 to 0.15