MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. AISI 446 Stainless Steel

518.0 aluminum belongs to the aluminum alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 5.0
23
Fatigue Strength, MPa 140
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
79
Shear Strength, MPa 200
360
Tensile Strength: Ultimate (UTS), MPa 310
570
Tensile Strength: Yield (Proof), MPa 190
300

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
1180
Melting Completion (Liquidus), °C 620
1510
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 98
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 81
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.4
2.4
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270
230
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
26
Strength to Weight: Axial, points 32
21
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 40
4.6
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 1.8
69.2 to 77
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Nickel (Ni), % 0 to 0.15
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0