MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. ASTM A182 Grade F122

518.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
220
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 5.0
23
Fatigue Strength, MPa 140
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 200
450
Tensile Strength: Ultimate (UTS), MPa 310
710
Tensile Strength: Yield (Proof), MPa 190
450

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 620
1490
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 98
24
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
10
Electrical Conductivity: Equal Weight (Specific), % IACS 81
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.4
3.0
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1160
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
140
Resilience: Unit (Modulus of Resilience), kJ/m3 270
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 38
22
Thermal Diffusivity, mm2/s 40
6.4
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 0 to 0.25
0.3 to 1.7
Iron (Fe), % 0 to 1.8
81.3 to 87.7
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0 to 0.15
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.25
0