MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. ASTM A369 Grade FP11

518.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP11 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is ASTM A369 grade FP11.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
140
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 5.0
20
Fatigue Strength, MPa 140
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 200
300
Tensile Strength: Ultimate (UTS), MPa 310
470
Tensile Strength: Yield (Proof), MPa 190
240

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 98
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1160
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
80
Resilience: Unit (Modulus of Resilience), kJ/m3 270
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 40
11
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 1.8
96.1 to 97.7
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.35
0.5 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0