MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. EN 1.4419 Stainless Steel

518.0 aluminum belongs to the aluminum alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 5.0
11 to 17
Fatigue Strength, MPa 140
230 to 680
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 200
410 to 950
Tensile Strength: Ultimate (UTS), MPa 310
660 to 1590
Tensile Strength: Yield (Proof), MPa 190
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
790
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 98
30
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 81
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.4
2.2
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1160
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 270
350 to 3920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 32
24 to 57
Strength to Weight: Bending, points 38
22 to 39
Thermal Diffusivity, mm2/s 40
8.1
Thermal Shock Resistance, points 14
23 to 55

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0
Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 1.8
82 to 86
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0