MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. EN 1.4587 Stainless Steel

518.0 aluminum belongs to the aluminum alloys classification, while EN 1.4587 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is EN 1.4587 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
160
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 5.0
34
Fatigue Strength, MPa 140
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 310
540
Tensile Strength: Yield (Proof), MPa 190
250

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 98
17
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 81
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.4
6.3
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1160
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
150
Resilience: Unit (Modulus of Resilience), kJ/m3 270
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 32
18
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 40
4.5
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.25
2.0 to 3.0
Iron (Fe), % 0 to 1.8
32.7 to 41.9
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.15
28 to 30
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0