MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. EN 1.5680 Steel

518.0 aluminum belongs to the aluminum alloys classification, while EN 1.5680 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 5.0
23
Fatigue Strength, MPa 140
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 200
390
Tensile Strength: Ultimate (UTS), MPa 310
620
Tensile Strength: Yield (Proof), MPa 190
440

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 98
48
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
5.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.4
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1160
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
130
Resilience: Unit (Modulus of Resilience), kJ/m3 270
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 32
22
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 40
13
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 1.8
93.4 to 95
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.8
Nickel (Ni), % 0 to 0.15
4.8 to 5.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0