MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. CC490K Brass

518.0 aluminum belongs to the aluminum alloys classification, while CC490K brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
76
Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 5.0
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 310
230
Tensile Strength: Yield (Proof), MPa 190
110

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 620
980
Melting Onset (Solidus), °C 560
910
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 98
72
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
16
Electrical Conductivity: Equal Weight (Specific), % IACS 81
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.4
2.9
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1160
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
28
Resilience: Unit (Modulus of Resilience), kJ/m3 270
54
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 32
7.3
Strength to Weight: Bending, points 38
9.5
Thermal Diffusivity, mm2/s 40
22
Thermal Shock Resistance, points 14
8.2

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Copper (Cu), % 0 to 0.25
81 to 86
Iron (Fe), % 0 to 1.8
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.15
0 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.35
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0 to 0.15
2.0 to 3.5
Zinc (Zn), % 0 to 0.15
7.0 to 9.5
Residuals, % 0 to 0.25
0