MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. Nickel 890

518.0 aluminum belongs to the aluminum alloys classification, while nickel 890 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 5.0
39
Fatigue Strength, MPa 140
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Shear Strength, MPa 200
400
Tensile Strength: Ultimate (UTS), MPa 310
590
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 620
1390
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
47
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.4
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1160
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
180
Resilience: Unit (Modulus of Resilience), kJ/m3 270
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 38
19
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 0 to 1.8
17.3 to 33.9
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.15
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0 to 0.35
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0