MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. SAE-AISI 9255 Steel

518.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 9255 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is SAE-AISI 9255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 5.0
21
Fatigue Strength, MPa 140
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
72
Shear Strength, MPa 200
430
Tensile Strength: Ultimate (UTS), MPa 310
680
Tensile Strength: Yield (Proof), MPa 190
390

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 98
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.4
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1160
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
120
Resilience: Unit (Modulus of Resilience), kJ/m3 270
400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 38
22
Thermal Diffusivity, mm2/s 40
13
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0
Carbon (C), % 0
0.51 to 0.59
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 1.8
96.2 to 97
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0.7 to 1.0
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.35
1.8 to 2.2
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0