MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. S30615 Stainless Steel

518.0 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 5.0
39
Fatigue Strength, MPa 140
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Shear Strength, MPa 200
470
Tensile Strength: Ultimate (UTS), MPa 310
690
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 620
1370
Melting Onset (Solidus), °C 560
1320
Specific Heat Capacity, J/kg-K 900
500
Thermal Conductivity, W/m-K 98
14
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 9.4
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1160
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
220
Resilience: Unit (Modulus of Resilience), kJ/m3 270
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 38
23
Thermal Diffusivity, mm2/s 40
3.7
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 1.8
56.7 to 65.3
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Nickel (Ni), % 0 to 0.15
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.35
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0