MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. C99400 Brass

5182 aluminum belongs to the aluminum alloys classification, while C99400 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is C99400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
44
Tensile Strength: Ultimate (UTS), MPa 280 to 420
460 to 550
Tensile Strength: Yield (Proof), MPa 130 to 360
230 to 370

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 640
1070
Melting Onset (Solidus), °C 590
1020
Specific Heat Capacity, J/kg-K 900
400
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
17
Electrical Conductivity: Equal Weight (Specific), % IACS 94
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.9
2.8
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
230 to 590
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 29 to 44
15 to 17
Strength to Weight: Bending, points 36 to 47
15 to 17
Thermal Shock Resistance, points 12 to 19
16 to 19

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
0.5 to 2.0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
83.5 to 96.5
Iron (Fe), % 0 to 0.35
1.0 to 3.0
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Nickel (Ni), % 0
1.0 to 3.5
Silicon (Si), % 0 to 0.2
0.5 to 2.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0.5 to 5.0
Residuals, % 0
0 to 0.3