MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. AWS E120C-K4

520.0 aluminum belongs to the aluminum alloys classification, while AWS E120C-K4 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is AWS E120C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
190
Elongation at Break, % 14
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 330
950
Tensile Strength: Yield (Proof), MPa 170
840

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 87
41
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 72
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.8
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 1170
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
160
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 35
34
Strength to Weight: Bending, points 41
27
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 14
28

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0.15 to 0.65
Copper (Cu), % 0 to 0.25
0 to 0.35
Iron (Fe), % 0 to 0.3
92.1 to 98.4
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0
0 to 0.5