MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. EN 1.5508 Steel

520.0 aluminum belongs to the aluminum alloys classification, while EN 1.5508 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is EN 1.5508 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 66
190
Elongation at Break, % 14
11 to 20
Fatigue Strength, MPa 55
210 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 230
300 to 360
Tensile Strength: Ultimate (UTS), MPa 330
420 to 1460
Tensile Strength: Yield (Proof), MPa 170
310 to 490

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 87
51
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 72
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.8
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1170
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 230
260 to 640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 35
15 to 52
Strength to Weight: Bending, points 41
16 to 36
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 14
12 to 43

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 0 to 0.3
97.9 to 99.199
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0