MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. EN 1.5538 Steel

520.0 aluminum belongs to the aluminum alloys classification, while EN 1.5538 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is EN 1.5538 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
160 to 190
Elastic (Young's, Tensile) Modulus, GPa 66
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 330
530 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 87
51
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 72
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.8
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1170
48

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 35
19 to 64
Strength to Weight: Bending, points 41
19 to 42
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 14
16 to 53

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.35 to 0.4
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 0 to 0.3
97.2 to 98.5
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
1.2 to 1.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0