MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. EN 1.8505 Steel

520.0 aluminum belongs to the aluminum alloys classification, while EN 1.8505 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is EN 1.8505 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
320
Elastic (Young's, Tensile) Modulus, GPa 66
190
Elongation at Break, % 14
13
Fatigue Strength, MPa 55
540
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 230
630
Tensile Strength: Ultimate (UTS), MPa 330
1050
Tensile Strength: Yield (Proof), MPa 170
860

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 87
39
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 72
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.8
1.6
Embodied Energy, MJ/kg 160
22
Embodied Water, L/kg 1170
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
120
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1950
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 35
37
Strength to Weight: Bending, points 41
30
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 14
31

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0.8 to 1.2
Carbon (C), % 0
0.28 to 0.35
Chromium (Cr), % 0
1.5 to 1.8
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.3
95.4 to 97.1
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0.4 to 0.7
Molybdenum (Mo), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0