MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. EN 2.4951 Nickel

520.0 aluminum belongs to the aluminum alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
200
Elastic (Young's, Tensile) Modulus, GPa 66
190
Elongation at Break, % 14
34
Fatigue Strength, MPa 55
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
76
Shear Strength, MPa 230
500
Tensile Strength: Ultimate (UTS), MPa 330
750
Tensile Strength: Yield (Proof), MPa 170
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 600
1360
Melting Onset (Solidus), °C 480
1310
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 87
12
Thermal Expansion, µm/m-K 25
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 72
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 9.8
9.3
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1170
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
200
Resilience: Unit (Modulus of Resilience), kJ/m3 230
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 35
25
Strength to Weight: Bending, points 41
22
Thermal Diffusivity, mm2/s 37
3.1
Thermal Shock Resistance, points 14
23

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0 to 0.3
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.3
0 to 5.0
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0.2 to 0.6
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0